124 research outputs found

    Avalanches, thresholds, and diffusion in meso-scale amorphous plasticity

    Full text link
    We present results on a meso-scale model for amorphous matter in athermal, quasi-static (a-AQS), steady state shear flow. In particular, we perform a careful analysis of the scaling with the lateral system size, LL, of: i) statistics of individual relaxation events in terms of stress relaxation, SS, and individual event mean-squared displacement, MM, and the subsequent load increments, Δγ\Delta \gamma, required to initiate the next event; ii) static properties of the system encoded by x=σyσx=\sigma_y-\sigma, the distance of local stress values from threshold; and iii) long-time correlations and the emergence of diffusive behavior. For the event statistics, we find that the distribution of SS is similar to, but distinct from, the distribution of MM. We find a strong correlation between SS and MM for any particular event, with SMqS\sim M^{q} with q0.65q\approx 0.65. qq completely determines the scaling exponents for P(M)P(M) given those for P(S)P(S). For the distribution of local thresholds, we find P(x)P(x) is analytic at x=0x=0, and has a value P(x)x=0=p0\left. P(x)\right|_{x=0}=p_0 which scales with lateral system length as p0L0.6p_0\sim L^{-0.6}. Extreme value statistics arguments lead to a scaling relation between the exponents governing P(x)P(x) and those governing P(S)P(S). Finally, we study the long-time correlations via single-particle tracer statistics. The value of the diffusion coefficient is completely determined by Δγ\langle \Delta \gamma \rangle and the scaling properties of P(M)P(M) (in particular from M\langle M \rangle) rather than directly from P(S)P(S) as one might have naively guessed. Our results: i) further define the a-AQS universality class, ii) clarify the relation between avalanches of stress relaxation and diffusive behavior, iii) clarify the relation between local threshold distributions and event statistics

    Evolution of displacements and strains in sheared amorphous solids

    Full text link
    The local deformation of two-dimensional Lennard-Jones glasses under imposed shear strain is studied via computer simulations. Both the mean squared displacement and mean squared strain rise linearly with the length of the strain interval Δγ\Delta \gamma over which they are measured. However, the increase in displacement does not represent single-particle diffusion. There are long-range spatial correlations in displacement associated with slip lines with an amplitude of order the particle size. Strong dependence on system size is also observed. The probability distributions of displacement and strain are very different. For small Δγ\Delta \gamma the distribution of displacement has a plateau followed by an exponential tail. The distribution becomes Gaussian as Δγ\Delta \gamma increases to about .03. The strain distributions consist of sharp central peaks associated with elastic regions, and long exponential tails associated with plastic regions. The latter persist to the largest Δγ\Delta \gamma studied.Comment: Submitted to J. Phys. Cond. Mat. special volume for PITP Conference on Mechanical Behavior of Glassy Materials. 16 Pages, 8 figure

    Mapping out the glassy landscape of a mesoscopic elastoplastic model

    Full text link
    We develop a mesoscopic model to study the plastic behavior of an amorphous material under cyclic loading. The model is depinning-like and driven by a disordered thresholds dynamics which are coupled by long-range elastic interactions. We propose a simple protocol of "glass preparation" which allows us to mimic thermalisation at high temperature, as well as aging at vanishing temperature. Various levels of glass stabilities (from brittle to ductile) can be achieved by tuning the aging duration. The aged glasses are then immersed into a quenched disorder landscape and serve as initial configurations for various protocols of mechanical loading by shearing. The dependence of the plastic behavior upon monotonous loading is recovered. The behavior under cyclic loading is studied for different ages and system sizes. The size and age dependence of the irreversibility transition is discussed. A thorough characterization of the disorder-landscape is achieved through the analysis of the transition graphs, which describe the plastic deformation pathways under athermal quasi-static shear. In particular, the analysis of the stability ranges of the strongly connected components of the transition graphs reveals the emergence of a phase-separation like process associated with the aging of the glass. Increasing the age and hence stability of the initial glass, results in a gradual break-up of the landscape of dynamically accessible stable states into three distinct regions: one region centered around the initially prepared glass phase, and two additional regions, characterized by well-separated ranges of positive and negative plastic strains, each of which is accessible only from the initial glass phase by passing through the stress peak in the forward, respectively, backward shearing directions.Comment: 20 pages, 12 figures, including supplemental materia

    Amorphous Systems in Athermal, Quasistatic Shear

    Full text link
    We present results on a series of 2D atomistic computer simulations of amorphous systems subjected to simple shear in the athermal, quasistatic limit. The athermal quasistatic trajectories are shown to separate into smooth, reversible elastic branches which are intermittently broken by discrete catastrophic plastic events. The onset of a typical plastic event is studied with precision, and it is shown that the mode of the system which is responsible for the loss of stability has structure in real space which is consistent with a quadrupolar source acting on an elastic matrix. The plastic events themselves are shown to be composed of localized shear transformations which organize into lines of slip which span the length of the simulation cell, and a mechanism for the organization is discussed. Although within a single event there are strong spatial correlations in the deformation, we find little correlation from one event to the next, and these transient lines of slip are not to be confounded with the persistent regions of localized shear -- so-called "shear bands" -- found in related studies. The slip lines gives rise to particular scalings with system length of various measures of event size. Strikingly, data obtained using three differing interaction potentials can be brought into quantitative agreement after a simple rescaling, emphasizing the insensitivity of the emergent plastic behavior in these disordered systems to the precise details of the underlying interactions. The results should be relevant to understanding plastic deformation in systems such as metallic glasses well below their glass temperature, soft glassy systems (such as dense emulsions), or compressed granular materials.Comment: 21 pages, 18 figure

    On the Spectrum of Direct Gaugino Mediation

    Full text link
    In direct gauge mediation, the gaugino masses are anomalously small, giving rise to a split SUSY spectrum. Here we investigate the superpartner spectrum in a minimal version of "direct gaugino mediation." We find that the sfermion masses are comparable to those of the gauginos - even in the hybrid gaugino-gauge mediation regime - if the messenger scale is sufficiently small.Comment: 21 pages, 4 figures; V2: refs. adde

    Flavor of quiver-like realizations of effective supersymmetry

    Full text link
    We present a class of supersymmetric models which address the flavor puzzle and have an inverted hierarchy of sfermions. Their construction involves quiver-like models with link fields in generic representations. The magnitude of Standard-Model parameters is obtained naturally and a relatively heavy Higgs boson is allowed without fine tuning. Collider signatures of such models are possibly within the reach of LHC in the near future.Comment: LaTeX, 17 pages, 3 figures. V2: reference adde

    Excess Higgs Production in Neutralino Decays

    Full text link
    The ATLAS and CMS experiments have recently claimed discovery of a Higgs boson-like particle at ~5 sigma confidence and are beginning to test the Standard Model predictions for its production and decay. In a variety of supersymmetric models, a neutralino NLSP can decay dominantly to the Higgs and the LSP. In natural SUSY models, a light third generation squark decaying through this chain can lead to large excess Higgs production while evading existing BSM searches. Such models can be observed at the 8 TeV LHC in channels exploiting the rare diphoton decays of the Higgs produced in the cascade decay. Identifying a diphoton resonance in association with missing energy, a lepton, or b-tagged jets is a promising search strategy for discovery of these models, and would immediately signal new physics involving production of a Higgs boson. We also discuss the possibility that excess Higgs production in these SUSY decays can be responsible for enhancements of up to 50% over the SM prediction for the observed rate in the existing inclusive diphoton searches, a scenario which would likely by the end of the 8 TeV run be accompanied by excesses in the diphoton + lepton/MET and SUSY multi-lepton/b searches and a potential discovery in a diphoton + 2b search.Comment: 42 pages, 19 figure
    corecore